
DataMover: A Lightweight Extensible Data Movement
Framework for Grid Environment
Wantao Liu1,2, Rajkumar Kettimuthu3,4, Ravi Madduri3,4

1 School of Computer Science and Engineering, Beihang University, Beijing, China
2 Department of Computer Science, The University of Chicago, Chicago, IL USA

3 Argonne National Laboratory, Argonne, IL USA
4 Computation Institute, The University of Chicago, Chicago, IL USA

Hliuwt@uchicago.eduH, Hkettimut@mcs.anl.govH, Hmadduri@mcs.anl.govH

Abstract
A common requirement within grid environments is the
ability to transfer data from one location to another. The
service and protocols required to support such data
transfers will vary between grid deployments, the actor
requesting a data transfer, and potentially the amount of
data that is to be transferred. Due to the diversity of these
factors, it’s necessary to provide a middleware to hide the
complexity and heterogeneity of such data transfer to
upper-layer applications. In this paper, we describe the
design and implementation of DataMover, which is a
middleware for third-party data transfer in compliance
with OGF DMI specification. DataMover is a lightweight
extensible third-party data movement framework based on
Globus Toolkit. It is designed as a set of WSRF-compliant
web services and implemented using Java language. It
offers a simple uniform interface for management of data
movement task from a given source to a specified
destination and supports multiple underlying transfer
protocols. In addition, DataMover is able to find a route
for data transfer task in which source site and destination
site have different transfer protocols. Application
developers can easily integrate their preferable data
transfer protocol into DataMover. Finally, we evaluate the
performance of DataMover in various scenarios.

1. Introduction

Data transfer is a common activity in distributed
environments. It has been well studied for many years, and
a handful of transfer protocols and mechanisms have been
proposed and implemented, such as FTP [1], GridFTP [2],
HTTP [22], and SCP [23].

Data transfer can be broadly classified into two
categories: client-server transfer and third-party transfer.
Client-server transfer is performed between a client and a
server. Client initiates a transfer to read data from the
server or write data into the server. FTP upload or
download operation is an example of client-server transfer.
In third-party transfer, there are three parties involved: one

client and two servers. The client communicates with the
two servers to coordinate the data transfer, and the actual
data is moved between the two servers directly. Third-party
transfer is the main focus of this paper.

To manage large data sets for distributed communities,
authenticated third-party data transfers between storage
servers are essential. A very good example for this is LCG
[3], the grid computing infrastructure built for LHC, which
produces several petabytes of data for 15 to 20 years. LCG
is composed of 3 tiers of sites: tier-0 locates in CERN,
below that is tier-1 sites in several participating countries;
at the end of this hierarchy structure is tier-2 sites operated
by universities or institutes. Since LHC experiments are a
collaboration of scientists all over the world and the data
amount produced is extremely huge, data produced by
these experiments is not only stored at tier-0, but also
replicated partly to tier-1 and tier-2. This type of data
transfer activity is inherently suitable for third-party
transfer, as it makes it easy to manage transfers between
sites. The user does not have to log on to source or
destination to do the transfer. Third-party is also useful at
the context of data intensive jobs scheduling. When jobs
are dispatched to remote sites for execution, data required
by the job need to be first staged in from data storage site to
execution site before job starts; Similarly, after job running,
the result data need to be staged out to data storage site.

However, as stated above, there are a number of data
transfer protocols; the way data transfers are performed
utilizing different transfer protocols is also different in
terms of programming interface for application developers.
It’s a huge challenge for them to integrate multiple transfer
protocols into their applications for data transfers.

In order to hide the complexity and heterogeneity of
underlying data transfer protocols, and mitigate burdens of
application developers, Data Movement Interface (DMI)
specification draft [16] has been developed jointly by
EPCC, Fujitsu, IBM, Microsoft, and Argonne National Lab
as part of open grid forum (OGF) [24] DMI working group.
DMI specification draft defines a universal web service
interface for application programmers to conduct third-
party transfer without concerns of the underlying data
transfer protocols.

Java language [20] has been widely used in web service
programming due to its features like platform independent,
object oriented, easy to study and use. Another reason why
Java is so popular is that there are a lot of tools and
middleware available for Java web service programming, a
big community develops and maintains them.

In this paper, we present design and implementation of
DataMover, which is a lightweight extensible framework
for performing third-party data transfer in grid environment
based on DMI specification. DataMover not only provides
a universal interface for application programmer, but also
offers an adaptor interface for easy integration of data
transfer protocols.

Specifically, DataMover is a set of WSRF-compliant
web services implemented using Java language. It provides
a universal programming interface for application
programmers to conduct third-party transfers. While
designing DataMover, the following principles are mostly
valued:
 Comply with standard;

 Easy to use;

 Efficiency;

 Extensible.

The paper is organized as follows. In section 2, some
previous work is reviewed; in section 3, design and
implementation of DataMover is presented; experiment
results are discussed in Section 4; future work and
conclusion is in Section 5 and Section 6, respectively.

2. Related Work

SRB (Storage Resource Broker) [5] is an integrated data
management system developed by SDSC, it concerns
mainly on shared "collections", which refers to a logical
name for a set of data objects. From user's perspective,
SRB provides a single-image logical file system; they don't
need to worry about where data objects are located. SRB
employs a series of methods to optimize data transfer.
Multiple streams are used for large file transfer, and for
movement of a lot of small files, SRB first fill small files
into a large buffer and then send the whole buffer in a
single operation. Third-party transfer is also supported in
SRB. Due to the extensibility of our framework,
DataMover can simply integrate SRB as an underlying
transfer mechanism. Now SRB is not supported in our
current implementation.

CaGrid transfer [6] is a component of caGrid, and is
implemented as an extension to Introduce, which is a
graphical grid service design and generation tool developed
by caGrid. It's capable of uploading data to service or
downloading data to client. CaGrid Transfer is composed
of four components: Transfer Service, Transfer Service
Helper, Transfer WebApp and Transfer Client Helper.

Among them, transfer service is the core component, which
is a WSRF-based grid service. Only HTTP and GSI-based
HTTPS are supported, they are encapsulated by Transfer
Webapp, which is a Java servlet. When generating web
service using Introduce, users can simply add CaGrid
Transfer to their service through a graphical interface. As
CaGrid Transfer holds data into a byte array, it is not
suitable for big volume of data movement. In order to move
big data, caGrid developed a component, named BulkData
Transport [17], which is based on GridFTP.

GridFTP [2] protocol is an extension of plain FTP
protocol. It defines general-purpose mechanism for secure,
reliable, high-performance data movement. It has been
widely used for efficiently transferring large volumes of
data. Globus implementation of GridFTP [7] has a modular
structure that supports multiple security options, multiple
transport protocols, coordinated data transfer utilizing
multiple computer nodes at the source and destination, and
other desirable features.

RFT (Reliable Transfer Service) [8] is a component of
Globus Toolkit [9]. It is implemented as a set of web
services, and is able to perform third-party transfers using
GridFTP with basic reliable mechanisms. Data transfer
state is dumped into database, when a transfer fails, it can
be restarted automatically from the broken point using the
persisted data. It also supports adjustment of GridFTP
parameters, like TCP buffer size, parallel streams, through
web service interface. The major difference between our
work and RFT is that RFT provides some mechanisms to
guarantee reliable transfer. In addition, RFT is tightly
coupled with GridFTP, However, DataMover is open to
various transfer protocols.

In Stork [18], data placement activity is considered as the
first class citizen in the Grid. It’s capable of queuing,
scheduling, monitoring and managing data placement
activities. Stork accepts data placement jobs from
DAGMan [19], and executes them according to given
policy. Stork also support multiple data transfer protocols
to conduct third-party transfer, and protocol adaptation can
be finished at runtime. The difference between Stork and
our work is that Stock is a data scheduler basically, it
interacts with DAGMan to accept jobs, while DataMover
presented in this paper interacts with application
programmer directly, and it provides a layer of API to hide
underlying complexity and heterogeneity of the transport
mechanisms.

Bistro [10][11] is designed as an internet scale
application for upload data, scalability is the key issue
addressed by that work. Upload refers to the
communication mode in which many clients want to
transfer data to a server. The basic approach in bistro is to
introduce intermediate sites, termed “bistros”. Clients first
push data into a bistro, and then the data is pulled by
destination server from the bistro. In that work, data
transfer is divided into four categories in terms of
communication model: one-to-one, one-to-many, many-to-

many, and many-to-one. According to this classification,
bistro belongs to "many-to-one", and our work falls into the
"one-to-one" category.

3. Design and Implementation of DataMover

3.1. Design principles

As stated above, the following principles are used to
guide design of DataMover:

 Comply with standard: DataMover implements
DMI specification, so that it has standard web
service interface and can seamlessly interact with
clients which are developed for other DMI
implementation. This makes life of application
programmers easier. Furthermore, data transfer in
grid environment is error-prone; it can be
interrupted due to server crashes, network outages
etc. Also, users want to check the status of their
transfers periodically or receive notifications about
the state of the data transfers. This requires data
transfer state to be maintained by DataMover. Due
to the stateless of plain web service, we use WSRF
[12] and WS-N [13] specifications to maintain state
and notify users, which is a standard way to support
state in web service.

 Easy to use: DataMover is a layer of middleware
between underlying data transfer protocols and
upper layer applications. We do not intend to
impose a steep learning curve to application
programmers. The complexity and heterogeneity of
different underlying data transfer protocols should
be hidden by DataMover, meanwhile, the

programming burden should be mitigated. So the
application developers only see a simple interface,
enabling them to concentrate on their application
logic, without being troubled by the details. To
achieve this goal, a simple API is designed to
expose to application programmers, and there is no
complex configuration in DataMover.

 Efficiency: DataMover provides a universal
interface for third-party data transfer; it’s a layer of
middleware and definitely imposes some overhead.
One of our objectives is to minimize the overhead.
Our performance experiments result show that the
overhead is very limited, that’s why we call
DataMover “lightweight”.

 Extensible: Due to the diversity of underlying data
transfer protocols, it’s not practical for DataMover
to incorporate all protocols. In this sense,
extensibility is a key requirement for DataMover.
Application programmers should be able to easily
integrate new transfer protocols into DataMover to
satisfy their own need.

3.2. Architecture of DataMover

XFigure 1 shows structure of DataMover from application
programmer’s perspective. This figure is from DMI
specification. DataMover exposes two web services to
application programmers: FactoryService and
InstanceService. FactoryService is a plain web service, and
is responsible for initiating InstanceService. Since a site
may support multiple underlying transfer protocols, the
FactoryService need to negotiate with source site and
destination site to select a transfer protocol to undertake the

Figure 1 Structure of DataMover from application programmer’s perspective, from DMI specification

transfer according to parameters provided by client.
DataMover is also able to conduct a transfer between two
sites which don’t have a common transfer protocol; this
feature will be elaborated later. After initiation, client talks
with InstanceService to perform the actual data transfer and
manage the whole transfer process. The data flows from
source site to destination site directly, without involving of
InstanceService. InstanceService is a WSRF-compliant web
service. A resource is created for each transfer and
notification mechanism is employed to report state to user.
Access information of a site is encapsulated into a Data End
Point Reference (DEPR), which is a specialized form of
EPR from WS-Addressing [14]. Each site has a unique
DEPR to identify itself. It also contains information about
which transfer protocols are supported by the site, and
FactoryService uses this information to negotiate a third-
party transfer between source site and destination site.

Figure 2 DataMover’s architecture

DataMover is designed as modular. XFigure 2X
demonstrates its architecture. We will examine this
architecture from bottom up. Due to the complexity and
heterogeneity of different underlying data transfer protocols,
a layer is required to hide details of these concrete protocols
to upper layers, we call this layer protocol adaptor. It
provides a flexible mechanism to add support for new
transfer protocols. Application programmers only need to
implement a specific interface of protocol adaptor to plug a
new protocol into the whole architecture.

In DataMover, an end-to-end transfer is called a
“session”. A session consists of one or more point-to-point
transfers; it can be regarded as a “logical transfer”. The
concept of session makes it easier to implement some
complicated features over basic data transfer function, and
the extensibility of the whole architecture is also enhanced,
which is one of our design principles. A session is managed
and monitored by session manager, through which the
upper layer of DataMover manipulates a session.
Application programmers are also able to pass command to
session manager through web service interface.

Scheduler is responsible for making scheduling decisions
of data transfer. It maintains a queue, where each data
transfer will be assigned a place using a scheduling policy.
Currently, DataMover only supports “First Come First
Serve” policy.

Route planner accepts source and destination DEPR, and
makes a plan about how to execute the transfer based on
selected policy. This module is basically designed for those
transfers in which source site and destination site don’t have
a common transfer protocol, in this case, one or more
intermediate sites is required to carry out the transfer
successfully. Currently, only “FirstFit” policy is
implemented. This feature will be explained at next section
detailed.

Configuration manager is the component in charge of
setting configuration parameters of DataMover, such as
transfer retry times, logging setting etc.

The programming interface exposed by DataMover is in
the form of WSRF-compliant web services. We will
introduce this interface in Section 3.4.

3.3. Data transfer relay

In some cases, it’s required to transfer data between two
sites which do not have a common transfer protocol. As
illustrated in XFigure 3X, site A has a deployment of GridFTP,
and site B has HTTP only. Obviously, the two sites can not
establish a connection and transfer data directly. In order to
address this issue, a “relay” mechanism is designed in
DataMover. As in the example, an intermediate site is
employed, which has both GridFTP and HTTP, to relay the
data movement. As illustrated in the figure, a third-party
transfer controlled by DataMover is first performed
between site A and C over GridFTP connection, and then
another third-party transfer moves data from C to its
destination B over HTTP. Logically, data is moved from A
to B directly.

Figure 3 Data transfer relay

Generally speaking, the process of finding an
intermediate site requires interaction with grid information
service, such as Globus MDS [15]. If more than one eligible

intermediate node is available, a policy should be employed
to select an optimal node. For simplicity, our current
implementation uses a static configuration file, instead of
grid information service, to get the suitable sites. And only
“FirstFit” selection policy is implemented, which means the
first site that can relay the transfer is picked up.

Figure 4 DataMover internal state transit graph

3.4. Application programming interface

As mentioned above, DataMover is composed of two
web services: FactoryService and InstanceService.
FactoryService is a plain web service, it has only one
operation:

 TransferInstance getInstance(GetInstanceRequest
param)

The source and destination DEPR as well as other
transfer requirements are encapsulated into type
GetInstanceRequest.

InstanceService is a WSRF web service, it utilizes
resource properties to maintain transfer state, and
notification mechanism is utilized as well to notify users
about transfer state timely. A new resource will be created
for each data transfer. There are five operations in
InstanceService:

 getStatus();
 start();
 stop();
 suspend();
 resume().
XFigure 4X is DataMover’s internal state transit graph. State

transit takes place at the trigger of operation invocation or
specified events. It’s “Created” state when a new resource
is created and initiated. When start() is invoked, the created

transfer will be put into the proper place of a queue
according to specific scheduling policy, and the state
transits into “Scheduled”. It will go into “Transferring”
state if the transfer is at the head of the queue and actual
data transfer begins. If suspend() operation is invoked, the
state will switch into “Suspended”, and resume() operation
will make the state come back to “transferring”. If data
transfer finishes successfully, the state will be “Done”;
otherwise, it will be “Failed”.

3.5. Implementation

Due to the modular design of DataMover, Java is a pretty
appropriate option to implement it. The following features
of Java language are utilized to make our implementation
easier:

 Object oriented: Entities and concepts in the
architecture are wrapped into different classes to
make the logic clearer; Complex classes are
assembled from simple ones.

 Interface mechanism: It’s the key feature required to
reach the extensible objective. New protocol
adaptor and scheduling policy is incorporated into
the architecture through interface, other components
only interact with their interface no matter how they
are implemented.

 Performance: The execution efficiency of Java is
not so satisfactory at its beginning days; whereas,
with boost of hardware performance and
improvement of JVM, now Java can meet
performance requirements of most cases.

 Cross-platform: DataMover is expected to be able to
run at different platforms, through Java’s platform
independent feature, the same code can compile and
execute in the same way at different platforms.

DataMover has been implemented using Java language.
Since WSRF and WS-N specifications are involved, Globus
Toolkit ws-core is selected as the web service container. At
present, we implements two protocol adaptors: GridFTP
adaptor and HTTP adaptor. GridFTP adaptor is based on
CoG jglobus library [21], and HTTP adaptor is programmed
as a web application deployed into Apache Tomcat.

4. Performance Evaluation

In this section, performance evaluation results are
presented. To evaluate the performance of DataMover and
overhead incurred by web service invocation, we carried
out the following experiments.

X

Figure 5 Data transfer time comparison between locally
invoked HTTP third-party transfer and DataMover using
HTTP adaptor. Data is moved from ANL to ORNL, RTT is

about 25 ms

Figure 5X and XFigure 6X demonstrate the performance of
DataMover with different data transfer protocol adaptors.
The data is transferred from a machine in Argonne National
Lab to a machine in Oak Ridge National Lab. Round Trip
Time (RTT) between source and destination is about 25ms.
DataMover is deployed into a GT4.0.8 ws-core container.
In order to reduce network delay for web service invocation
as much as possible, test client was running at the same
machine as DataMover. Ten files of sizes 1MB, 5MB,
10MB, 30MB, 50MB, 100MB, 300MB, 500MB, 700MB,
and 1000MB were transferred over the network. Each size
of data was transferred five times, and the average value of
each transfer time is calculated to draw these graphs. In
XFigure 5X, DataMover uses HTTP adaptor, and compares
with HTTP third-party transfer, invoked by a command-line
program. From this graph, we can see that the data transfer
takes longer time with the increase of data size, and the two
curves are very close to each other; this demonstrates that
the overhead introduced by DataMover is very little. In
XFigure 6X, GridFTP adaptor is employed in DataMover, and
the data transfer time is in comparison with that of globus-
url-copy, which is a command-line tool distributed with
Globus GridFTP. The result shows similar trend with
XFigure 5X.

To investigate the overhead imposed by web service
invocation, we invoked a “dummy” DataMover 10 times in
a loop continuously, here “dummy” means no actual data
transfer is performed, but the other logic is identical with
that of DataMover. The “dummy” DataMover and client are
deployed in the same machine. The result shows in XFigure 7X.
Each DataMover invocation actually is composed of two
web service invocation: FactoryService and InstanceService.
As shown in the figure, the first invocation of “dummy”
DataMover takes about 4 seconds, while others only cost
about 100ms. That’s because for the first time, client side
Axis SOAP engine requires an initiation process, and Axis
maintains a client cache as well. To verify this, we carried
out this experiment using other web service, and the results
confirmed our conclusion. Due to this phenomenon, the
average overhead by DataMover is less than 1 second.

Figure 6 Data transfer time comparison between

globus-url-copy third-party transfer and DataMover
using GridFTP adaptor. Data is moved from ANL to

ORNL, RTT is about 25 ms

Figure 7 “dummy” DataMover invocation overhead.
Both DataMover and client are deployed in the same

machine

Figure 8 Data transfer time relayed by DataMover,

source site locates in ANL using HTTP protocol, and
destination site locates in ORNL using GridFTP

protocol, the transfer is relayed by an intermediate
machine in ANL, which has both GridFTP and HTTP
The next experiment shows the performance of the

transfer relayed by an intermediate site. In this test, both
source site and intermediate site are located in Argonne
National Lab, and destination site is in Oak Ridge National
Lab. The data is first transferred from source to
intermediate site through HTTP protocol, and then moved
from intermediate site to destination over GridFTP protocol.
The result is shown in Figure 8.

5. Future Work

In future, we plan to add connection splitting feature into
DataMover to split a long, poor performance connection
into a series of short, good performance connections. We
plan to research into how to efficiently split a connection
and develop an algorithm to solve it. Route planner now
only supports “FirstFit” policy to pick up an intermediate
site. We plan to develop some more sophisticated
alternative policies in which historical information is used
to evaluate which site is suitable. We intend to add more
advanced scheduling policies with consideration of transfer
requirement, such as QoS requirement, cost requirement,
etc.

6. Conclusion

In this paper, we presented the design and
implementation of a lightweight extensible data movement
framework: DataMover. It performs third-party transfers
between two servers, and hides the complexity and
heterogeneity of various underlying data transfer protocols.
We depicted the principles which guided the design of
DataMover and its architecture. We evaluated the
performance of DataMover and the results show that it is
efficient.

7. Acknowledgements

This work was supported in part by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Dept. of
Energy, under Contract DE-AC02-06CH11357 and in part
by National Science Foundation’s CDIGS.

0BREFERENCES

[1] J. Postel and J. Reynolds, “File Transfer Protocol,” IETF,

RFC 959, 1985.
[2] Allcock, W. GridFTP: Protocol Extensions to FTP for the

Grid. Global Grid ForumGFD-RP. 020, 2003.
[3] Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H.,

and Stockinger, K. (2000) “Data Management in an
International Data Grid Project,” IEEE/ACM International
Workshop on Grid Computing Grid’2000, Bangalore, India
17-20 December 2000.

[4] Tavel, P. 2007 Modeling and Simulation Design. AK Peters
Ltd.

[5] http://www.sdsc.edu/srb/index.php/Main_Page
[6] http://www.cagrid.org/wiki/CaGridTransfer
[7] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.

Dumitrescu, I. Raicu, and I. Foster, “The Globus striped
GridFTP framework and server,” in SC'05, ACM Press, 2005

[8] http://globus.org/toolkit/docs/latest-stable/data/rft/#rft.

[9] http://globus.org/toolkit/
[10] S. Bhattacharjee, W. Cheng, Chou C., Golubchik L., and

Khuller S. Bistro: A Framework for Building Scalable Wide-
Area Upload Applications. Performance Evaluation Review,
28(2):29-35, 2000.

[11] Golubchik, L. Cheng, W.C., Chou, C-F, Khuller, S., Samet,
H. and Wan, Y.C.J. “Bistro: A Scalable and Secure Data
Transfer Service For Digital Government Applications,”
Communications of the ACM (46:1), 2003, pp. 50-51.

[12] www.oasis-open.org/committees/wsrf/
[13] www.oasis-open.org/committees/wsn/
[14] www.w3.org/Submission/ws-addressing/
[15] http://globus.org/toolkit/docs/latest-stable/info/#info
[16] http://forge.gridforum.org/sf/projects/ogsa-dmi-wg
[17] http://cagrid.org/wiki/BulkDataTransport
[18] T. Kosar and M. Livny. Stork: Making Data Placement a

First Class Citizen in the Grid. In Proceedings of the 24th
International Conference on Distributed Computing Systems
(ICDCS 2004), Tokyo, Japan, March 2004.

[19] Condor. The Directed Acyclic Graph Manager.
http://www.cs.wisc.edu/condor/dagman/

[20] J. Gosling, B. Joy, and G. Steele, The Java Language
Specification, Addison Wesley, 1996

[21] http://dev.globus.org/wiki/CoG_jglobus
[22] http://www.w3.org/Protocols/
[23] http://www.eos.ncsu.edu/remoteaccess/man/scp.html
[24] http://www.ogf.org/

